Search results for "Thermal Filter"

showing 10 items of 10 documents

A Temperature-Dependent X-Ray Absorption Characterization of Test Filters for the ATHENA Mission X-IFU Instrument

2018

In order to work properly, the X-ray Integral Field Unit of the ATHENA mission requires a set of thermal filters that block the infrared radiation, preventing it to reach the detector. Each filter will be mounted and thermally anchored onto a shield of the multistage cryostat and will be kept at the specific temperature of the stage. On the other hand, the filters partially absorb X-rays, and their transmittance has to be carefully characterized. The effect of temperature on the absorption edges of the elements that make up the filters has not been investigated yet. Here, we report the results of a preliminary run on the optical transmission data around the edges of C, N, and O at different…

CryostatAtomic and Molecular Physics and OpticMaterials scienceInfraredThermal filter-02 engineering and technology01 natural sciencesOptics0103 physical sciencesThermalTransmittanceGeneral Materials Science010306 general physicsAbsorption (electromagnetic radiation)X-IFUbusiness.industryDetector021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsATHENAK-edgeK-edgeFilter (video)Materials Science (all)0210 nano-technologybusinessJournal of Low Temperature Physics
researchProduct

Temperature effects on the performances of the ATHENA X-IFU thermal filters

2016

The X-Ray Integral Field Unit (X-IFU) detector on-board ATHENA is an array of TES micro-calorimeters that will operate at ~50 mK. In the current investigated design, five thermal filters (TF) will be mounted on the cryostat shields to attenuate IR radiative load and avoid energy resolution degradation due to photon shot noise. Each filter consists of a thin polyimide film (~50 nm thick) coated with aluminum (~30 nm thick). Since the TF operate at different temperatures in the range 0.05-300 K, it is relevant to study how temperature affects their mechanical/optical performances (e.g. near edge absorption fine structures of the atomic elements in the filter material). Such results are crucia…

CryostatMaterials scienceAbsorption spectroscopybusiness.industrythermal filtersATHENA missionShot noise02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnologyATHENA mission thermal filters XANES01 natural sciencesXANESSettore FIS/05 - Astronomia E AstrofisicaOptics0103 physical sciencesRadiative transferCalibration010306 general physics0210 nano-technologybusinessAbsorption (electromagnetic radiation)PolyimideSPIE Proceedings
researchProduct

Thermal modelling of the ATHENA X-IFU filters

2018

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The X-IFU instrument of the ATHENA mission requires a set of thermal filters to reduce the photon shot noise onto its cryogenic detector and to protect it from molecular contamination. A set of five filters, operating at different nominal temperatures corresponding to the cryostat shield temperatures, is currently baselined. The knowledge of the actual filter temperature profi…

CryostatMaterials scienceCondensed Matter Physic01 natural sciencesthermal simulationSettore FIS/05 - Astronomia E AstrofisicaOpticsthermal filter0103 physical sciencesThermalEmissivityRadiative transferElectrical and Electronic Engineering010306 general physicsThermal analysis010303 astronomy & astrophysicsX-IFUbusiness.industryElectronic Optical and Magnetic MaterialDetectorShot noiseComputer Science Applications1707 Computer Vision and Pattern RecognitionATHENAApplied MathematicFilter (video)businessSpace Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray
researchProduct

Thermal Filters for the ATHENA X-IFU: Ongoing Activities Toward the Conceptual Design

2016

ATHENA is the L2 mission selected by ESA to pursue the science theme “Hot and Energetic Universe.” One of the two focal plane instruments is the X-ray Integral Field Unit, an array of TES microcalorimeters operated at T $$<$$ 100 mK. To allow the X-ray photons focused by the telescope to reach the detector, windows have to be opened on the cryostat thermal shields. X-ray transparent filters need to be mounted on these open windows to attenuate the IR radiation from warm surfaces, to attenuate RF electromagnetic interferences on TES sensors and SQUID electronics, and to protect the detector from contamination. This paper reviews the ongoing activities driving the design of the X-IFU thermal …

CryostatX-ray AstronomyAtomic and Molecular Physics and OpticATHENA; Thermal Filters; X-IFU; X-ray Astronomy; Condensed Matter Physics; Atomic and Molecular Physics and Optics; Materials Science (all)ShieldsCondensed Matter Physic01 natural sciencesThermal Filterlaw.invention010309 opticsTelescopeATHENA; Thermal Filters; X-IFU; X-ray Astronomy; Atomic and Molecular Physics and Optics; Materials Science (all); Condensed Matter PhysicsOpticsSettore FIS/05 - Astronomia E AstrofisicaConceptual designlawAtomic and Molecular Physics0103 physical sciencesGeneral Materials ScienceElectronics010303 astronomy & astrophysicsThermal FiltersPhysicsX-ray astronomyX-IFUbusiness.industryDetectorCondensed Matter PhysicsAtomic and Molecular Physics and OpticsATHENACardinal pointMaterials Science (all)and Opticsbusiness
researchProduct

Optical thermal filters for eXTP: manufacturing and characterization

2020

In order to ensure the effective detection of X-ray astronomical detectors by blocking ultraviolet, visible and infrared light, adding optical thermal filter in front of the load is an effective method. According to the scientific requirements of eXTP, optical thermal filters with aluminized polyimide (PI) film structure had been designed and tested in this paper, the results of mechanical tests including burst pressure, vibration and acoustic tests, also the transparent properties of optics in UV, Vis and IR lights are presented. The mechanical test results show that the filters for LAD and SFA can't pass the acoustic tests, causing the thickness of PI should be increased or a nickel mesh …

Materials sciencebusiness.industryInfraredDetectorFilter (signal processing)Acoustic testmedicine.disease_causeVibrationSettore FIS/05 - Astronomia E AstrofisicaBurst pressureTransparent propertyTransmission (telecommunications)Vibration testThermalOptical thermal filtermedicineOptoelectronicsbusinessUltravioletPolyimideSpace Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray
researchProduct

Surface investigation and aluminum oxide estimation on test filters for the ATHENA X-IFU and WFI detectors

2016

The ATHENA mission provides the demanded capabilities to address the ESA science theme "Hot and Energetic Universe". Two complementary instruments are foreseen: the X-IFU (X-ray Integral Field Unit) and WFI (Wide Field Imager). Both the instruments require filters to avoid that the IR radiation heats the X-IFU cryogenic detector and to protect the WFI detector from UV photons. Previous experience on XMM filters recommends to employ bilayer membrane consisting of aluminum deposited on polyimide. In this work, we use the X-ray Photoelectron Spectroscopy (XPS) to quantify the native aluminum oxide thickness that affects the spectral properties of the filter. The estimation of the oxide thickne…

PhotonMaterials sciencebusiness.industryPhotoemission spectroscopyInfraredAthena mission thermal filters aluminum oxide.thermal filtersDetector02 engineering and technologyRadiation021001 nanoscience & nanotechnology01 natural sciences7. Clean energy010309 opticsaluminum oxideOpticsSettore FIS/05 - Astronomia E AstrofisicaX-ray photoelectron spectroscopyFilter (video)0103 physical sciencesPrototype filter0210 nano-technologybusinessAthena mission
researchProduct

Preliminary Mechanical Characterization of Thermal Filters for the X-IFU Instrument on Athena

2018

The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision Science Program. The X-IFU consists of a large array of TES microcalorimeters that will operate at ~ 50 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be mounted on the cryostat thermal shields in order to attenuate the IR radiative load, to attenuate RF electromagnetic interferences, and to protect the detector from contamination. In this paper, we present the current thermal filters design, describe the filter samples developed/procured so far, and present preliminary results from the ongoing charac…

PhysicsCryostatX-IFUCosmic VisionAtomic and Molecular Physics and Opticbusiness.industryDetectorShieldsX-ray microcalorimeterThermal filterCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsCharacterization (materials science)OpticsFilter (video)0103 physical sciencesThermalRadiative transferGeneral Materials ScienceAthenaMaterials Science (all)010306 general physicsbusiness010303 astronomy & astrophysics
researchProduct

X-Ray microcalorimeter detectors - Technology developments for high energy astrophysics space missions

2020

Improvements in the design, fabrication, and performance of astronomical detectors has ushered in the so-called era of multi messenger astrophysics, in which several different signals (electromagnetic waves, gravitational waves, neutrinos, cosmic rays) are processed to obtain detailed descriptions of their sources. Soft x-ray instrumentation has been developed in the last decades and used on board numerous space missions. This has allowed a deep understanding of several physical phenomena taking place in astrophysical sources of different scales from normal stars to galaxy clusters and huge black holes. On the other hand, imaging and spectral capabilities in the the hard x-rays are still la…

Settore FIS/05 - Astronomia E Astrofisicathermal filterselectroplatingNTD GeHard x-raymicrocalorimeter
researchProduct

Filters for X-Ray Detectors on Space Missions

2022

Thin filters and gas-tight windows are used in space to protect sensitive X-ray detectors from out-of-band electromagnetic radiation, low-energy particles, and molecular contamination. Though very thin and made of light materials, filters are not fully transparent to X-rays. For this reason, they ultimately define the detector quantum efficiency at low energies. In this chapter, we initially provide a brief overview of filter materials and specific designs adopted on space experiments with main focus on detectors operating at the focal plane of grazing incidence X-ray telescopes. We then provide a series of inputs driving the design and development of filters for high-energy astrophysics sp…

X-ray filters X-ray detectors Thermal filters Optical blocking filters Filter modeling Filter characterization Filter calibration Space missionsSettore FIS/05 - Astronomia E Astrofisica
researchProduct

Synchrotron x-ray transmission measurements and modeling of filters investigated for Athena

2020

International audience; Advanced Telescope for High-Energy Astrophysics is a large-class astrophysics space mission selected by the European Space Agency to study the theme "Hot and Energetic Universe." The mission essentially consists of a large effective area x-ray telescope and two detectors: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). Both instruments require filters to shield from out-of-band radiation while providing high transparency to x-rays. The mission is presently in phase B; thus, to consolidate the preliminary design, investigated filter materials need to be properly characterized by experimental test campaigns. We report results from high-resolution…

synchrotron radiationComputer scienceAstrophysics::High Energy Astrophysical PhenomenaMechanical EngineeringAstrophysics::Instrumentation and Methods for AstrophysicsSynchrotron radiationtelescopesAstronomy and AstrophysicsElectronic Optical and Magnetic Materialslaw.inventionTelescopeFilter designSettore FIS/05 - Astronomia E AstrofisicaTransmission (telecommunications)Space and Planetary ScienceControl and Systems EngineeringlawFilter (video)[SDU]Sciences of the Universe [physics]CalibrationOptical filterInstrumentationDigital filterastrophysics space mission Athena optical and thermal filters Wide Field Imager X-ray Integral Field Unit x-ray transmissionRemote sensing
researchProduct